117 research outputs found

    Emissivity: A Program for Atomic Emissivity Calculations

    Full text link
    In this article we report the release of a new program for calculating the emissivity of atomic transitions. The program, which can be obtained with its documentation from our website www.scienceware.net, passed various rigorous tests and was used by the author to generate theoretical data and analyze observational data. It is particularly useful for investigating atomic transition lines in astronomical context as the program is capable of generating a huge amount of theoretical data and comparing it to observational list of lines. A number of atomic transition algorithms and analytical techniques are implemented within the program and can be very useful in various situations. The program can be described as fast and efficient. Moreover, it requires modest computational resources.Comment: 20 pages, 0 figures, 0 table

    Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits

    Full text link
    In this paper, analytical expressions correlating the volumetric flow rate to the pressure drop are derived for the flow of Carreau and Cross fluids through straight rigid circular uniform pipes and long thin slits. The derivation is based on the application of Weissenberg-Rabinowitsch-Mooney-Schofield method to obtain flow solutions for generalized Newtonian fluids through pipes and our adaptation of this method to the flow through slits. The derived expressions are validated by comparing their solutions to the solutions obtained from direct numerical integration. They are also validated by comparison to the solutions obtained from the variational method which we proposed previously. In all the investigated cases, the three methods agree very well. The agreement with the variational method also lends more support to this method and to the variational principle which the method is based upon.Comment: 27 pages, 6 figure

    One-Dimensional Navier-Stokes Finite Element Flow Model

    Full text link
    This technical report documents the theoretical, computational, and practical aspects of the one-dimensional Navier-Stokes finite element flow model. The document is particularly useful to those who are interested in implementing, validating and utilizing this relatively-simple and widely-used model.Comment: 46 pages, 1 tabl

    Modeling the Flow of Yield-Stress Fluids in Porous Media

    Full text link
    Yield-stress is a problematic and controversial non-Newtonian flow phenomenon. In this article, we investigate the flow of yield-stress substances through porous media within the framework of pore-scale network modeling. We also investigate the validity of the Minimum Threshold Path (MTP) algorithms to predict the pressure yield point of a network depicting random or regular porous media. Percolation theory as a basis for predicting the yield point of a network is briefly presented and assessed. In the course of this study, a yield-stress flow simulation model alongside several numerical algorithms related to yield-stress in porous media were developed, implemented and assessed. The general conclusion is that modeling the flow of yield-stress fluids in porous media is too difficult and problematic. More fundamental modeling strategies are required to tackle this problem in the future.Comment: 27 pages and 5 figure

    Special Relativity: Scientific or Philosophical Theory?

    Full text link
    In this article, we argue that the theory of special relativity, as formulated by Einstein, is a philosophical rather than a scientific theory. What is scientific and experimentally supported is the formalism of the relativistic mechanics embedded in the Lorentz transformations and their direct mathematical, experimental and observational consequences. This is in parallel with the quantum mechanics where the scientific content and experimental support of this branch of physics is embedded in the formalism of quantum mechanics and not in its philosophical interpretations such as the Copenhagen school or the parallel worlds explanations. Einstein theory of special relativity gets unduly credit from the success of the relativistic mechanics of Lorentz transformations. Hence, all the postulates and consequences of Einstein interpretation which have no direct experimental or observational support should be reexamined and the relativistic mechanics of Lorentz transformations should be treated in education, academia and research in a similar fashion to that of quantum mechanics.Comment: 12 page

    Further validation to the variational method to obtain flow relations for generalized Newtonian fluids

    Full text link
    We continue our investigation to the use of the variational method to derive flow relations for generalized Newtonian fluids in confined geometries. While in the previous investigations we used the straight circular tube geometry with eight fluid rheological models to demonstrate and establish the variational method, the focus here is on the plane long thin slit geometry using those eight rheological models, namely: Newtonian, power law, Ree-Eyring, Carreau, Cross, Casson, Bingham and Herschel-Bulkley. We demonstrate how the variational principle based on minimizing the total stress in the flow conduit can be used to derive analytical expressions, which are previously derived by other methods, or used in conjunction with numerical procedures to obtain numerical solutions which are virtually identical to the solutions obtained previously from well established methods of fluid dynamics. In this regard, we use the method of Weissenberg-Rabinowitsch-Mooney-Schofield (WRMS), with our adaptation from the circular pipe geometry to the long thin slit geometry, to derive analytical formulae for the eight types of fluid where these derived formulae are used for comparison and validation of the variational formulae and numerical solutions. Although some examples may be of little value, the optimization principle which the variational method is based upon has a significant theoretical value as it reveals the tendency of the flow system to assume a configuration that minimizes the total stress. Our proposal also offers a new methodology to tackle common problems in fluid dynamics and rheology.Comment: 31 pages, 7 figure

    Using the stress function in the flow of generalized Newtonian fluids through pipes and slits

    Full text link
    We use a generic and general numerical method to obtain solutions for the flow of generalized Newtonian fluids through circular pipes and plane slits. The method, which is simple and robust can produce highly accurate solutions which virtually match any analytical solutions. The method is based on employing the stress, as a function of the pipe radius or slit thickness dimension, combined with the rate of strain function as represented by the fluid rheological constitutive relation that correlates the rate of strain to stress. Nine types of generalized Newtonian fluids are tested in this investigation and the solutions obtained from the generic method are compared to the analytical solutions which are obtained from the Weissenberg-Rabinowitsch-Mooney-Schofield method. Very good agreement was obtained in all the investigated cases. All the required quantities of the flow which include local viscosity, rate of strain, flow velocity profile and volumetric flow rate, as well as shear stress, can be obtained from the generic method. This is an advantage as compared to some traditional methods which only produce some of these quantities. The method is also superior to the numerical meshing techniques which may be used for resolving the flow in these systems. The method is particularly useful when analytical solutions are not available or when the available analytical solutions do not yield all the flow parameters.Comment: 15 pages, 2 figures, 2 tables. arXiv admin note: text overlap with arXiv:1503.0126

    Variational approach for the flow of Ree-Eyring and Casson fluids in pipes

    Full text link
    The flow of Ree-Eyring and Casson non-Newtonian fluids is investigated using a variational principle to optimize the total stress. The variationally-obtained solutions are compared to the analytical solutions derived from the Weissenberg-Rabinowitsch-Mooney equation and the results are found to be identical within acceptable numerical errors and modeling approximations.Comment: 18 pages, 2 figure

    Flow of Navier-Stokes Fluids in Converging-Diverging Distensible Tubes

    Get PDF
    We use a method based on the lubrication approximation in conjunction with a residual-based mass-continuity iterative solution scheme to compute the flow rate and pressure field in distensible converging-diverging tubes for Navier-Stokes fluids. We employ an analytical formula derived from a one-dimensional version of the Navier-Stokes equations to describe the underlying flow model that provides the residual function. This formula correlates the flow rate to the boundary pressures in straight cylindrical elastic tubes with constant-radius. We validate our findings by the convergence toward a final solution with fine discretization as well as by comparison to the Poiseuille-type flow in its convergence toward analytic solutions found earlier in rigid converging-diverging tubes. We also tested the method on limiting special cases of cylindrical elastic tubes with constant-radius where the numerical solutions converged to the expected analytical solutions. The distensible model has also been endorsed by its convergence toward the rigid Poiseuille-type model with increasing the tube wall stiffness. Lubrication-based one-dimensional finite element method was also used for verification. In this investigation five converging-diverging geometries are used for demonstration, validation and as prototypes for modeling converging-diverging geometries in general.Comment: 31 pages, 9 figures, 2 table
    • …
    corecore